Case Study on Dynamic Identification of Overburden Fracture and Strong Mine Pressure Mechanism of Isolated Working Face Based on Microseismic Clustering

Author:

Chen Yiqi,Liu Changyou,Liu Jinrong,Yang Peiju,Lu Shuo

Abstract

Strong mine pressure has a great impact upon the safety production of coal mines. Microseismic information provides a more advanced technical means for overburden fracture dynamic identification and mine pressure mechanism research, since it contains rich information on rock fracture sources. In this study, the isolated LW8102 working face in Tongxin Mine was investigated in order to propose a spatio-temporal microseismic event data analysis method based on the k-means clustering algorithm. This algorithm can handle dynamic identification of overburden fractures constrained by spatiotemporally discrete distributions of microseismic events. This provided the dynamic extension process and the fracture distribution pattern of the overburden: eight fracture extensions were formed in the overburden. In each extension, vertical fractures connected the low and high rock layers in the LW8102 and LW8103 goafs, and through fractures connected the LW8102 and LW8103 goafs in their high, middle, and low levels. Some extensions had fractures that were connected to form a closed loop structure. In the vertical fracture, there was a tendency for one or two layers of the stratum to fail first, and then extend to one or both sides. The process of through and vertical fracture propagation followed a certain temporal sequence, reflected primarily in two forms: firstly, as the vertical fracture extended to a certain layer, it provided the initial rupture space for through fracture spreading; secondly, the through fracture first broke, and then extended to the vertical fracture until it intersected with the vertical fracture or provided the initial rupture space for the expansion of the vertical fracture. By matching the overburden fracture to the mine pressure that responded to the support resistance, we analyzed the mechanism of mine pressure at the working face. Through fracture at the high level was found to be the primary cause of the occurrence of mining pressure. It was precisely placed that the formation of multiple adjacent high through fractures 110 m from the floor, triggering simultaneous instability motion of the lower multi-layer level rock; this was the main reason for the phenomenon of strong mine pressure at the working face. Meanwhile, high through fracture at 80 m from the floor was the main reason for the phenomenon of large mine pressure at the working face.

Funder

National Natural Science Foundation of China

Graduate Research and Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference28 articles.

1. Strong strata pressure caused by hard roof group structure breaking and supporting strength determination;Yang;J. Univ. Sci. Technol. Beijing,2014

2. Study of the cylindrical shell structural characteristic of the hard overlying strata of extra thick coal seam and its application;Zhang;J. China Univ. Min. Technol.,2017

3. Mechanism and technology of roof collaborative controlling in the process of Jurassic and Carboniferous coal mining in Datong mining area;Yu;J. China Univ. Min. Technol.,2018

4. Breakage form and its effect on strata behavior of far field key stratum in large space stope;Zhu;Coal Sci. Technol.,2018

5. Study on the mechanism of strong strata behavior influenced by overlying coal pillar and control technology of ground fracturing;Gao;J. Min. Saf. Eng.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3