Abstract
Process monitoring plays an important role in ensuring the safety and stable operation of equipment in a large-scale process. This paper proposes a novel data-driven process monitoring framework, termed the ensemble adaptive sparse Bayesian transfer learning machine (EAdspB-TLM), for nonlinear fault diagnosis. The proposed framework has the following advantages: Firstly, the probabilistic relevance vector machine (PrRVM) under Bayesian framework is re-derived so that it can be used to forecast the plant operating conditions. Secondly, we extend the PrRVM method and assimilate transfer learning into the sparse Bayesian learning framework to provide it with the transferring ability. Thirdly, the source domain (SD) data are re-enabled to alleviate the issue of insufficient training data. Finally, the proposed EAdspB-TLM framework was effectively applied to monitor a real wastewater treatment process (WWTP) and a Tennessee Eastman chemical process (TECP). The results further demonstrate that the proposed method is feasible.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献