Abstract
Precise solar radiation forecasting is of great importance for solar energy utilization and its integration into the grid, but because of the daily solar radiation’s intrinsic non-stationary and nonlinearity, which is influenced by a lot of elements, single predicting models may have difficulty obtaining results with high accuracy. Therefore, this paper innovatively puts forward an original hybrid model that predicts solar radiation through extreme learning machine (ELM) optimized by the bat algorithm (BA) based on wavelet transform (WT) and principal component analysis (PCA). First, choose the meteorological variables on the basis of Pearson coefficient test, and WT will decompose historical solar radiation into two time series, which are de-noised signal and noise signal. In the approximate series, the lag phase of historical radiation is obtained by partial autocorrelation function (PACF). After that, use PCA to reduce the dimensions of the influencing factors, including meteorological variables and historical radiation. Finally, ELM is established to predict daily solar radiation, whose input weight and deviation thresholds gained optimization by BA, thus it is called BA-ELM henceforth. In view of the four distinct solar radiation series obtained by NASA, the empirical simulation explained the hybrid model’s validity and effectiveness compared to other primary methods.
Funder
The Fundamental Research Funds for the Central Universities
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献