Small Zoom Mismatch Adjustment Method for Dual-Band Fusion Imaging System Based on Edge-Gradient Normalized Mutual Information

Author:

Chen Jieling1,Liu Zhihao1,Jin Weiqi1,Yang Jianguo1,Li Li1

Affiliation:

1. MOE Key Laboratory of Optoelectronic Imaging Technology and System, Beijing Institute of Technology, Beijing 100081, China

Abstract

Currently, automatic optical zoom setups are being extensively explored for their applications in search, detection, recognition, and tracking. In visible and infrared fusion imaging systems with continuous zoom, dual-channel multi-sensor field-of-view matching control in the process of synchronous continuous zoom can be achieved by pre-calibration. However, mechanical and transmission errors of the zoom mechanism produce a small mismatch in the field of view after co-zooming, degrading the sharpness of the fusion image. Therefore, a dynamic small-mismatch detection method is necessary. This paper presents the use of edge-gradient normalized mutual information as an evaluation function of multi-sensor field-of-view matching similarity to guide the small zoom of the visible lens after continuous co-zoom and ultimately reduce the field-of-view mismatch. In addition, we demonstrate the use of the improved hill-climbing search algorithm for autozoom to obtain the maximum value of the evaluation function. Consequently, the results validate the correctness and effectiveness of the proposed method under small changes in the field of view. Therefore, this study is expected to contribute to the improvement of visible and infrared fusion imaging systems with continuous zoom, thereby enhancing the overall working of helicopter electro-optical pods, and early warning equipment.

Funder

National Natural Science Foundation of China

National Defense Basic Scientific Research Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3