AGR4BS: A Generic Multi-Agent Organizational Model for Blockchain Systems

Author:

Roussille HectorORCID,Gürcan ÖnderORCID,Michel FabienORCID

Abstract

Blockchain is a very attractive technology since it maintains a public, append-only, immutable and ordered log of transactions which guarantees an auditable ledger accessible by anyone. Blockchain systems are inherently interdisciplinary since they combine various fields such as cryptography, multi-agent systems, distributed systems, social systems, economy, and finance. Furthermore, they have a very active and dynamic ecosystem where new blockchain platforms and algorithms are developed continuously due to the interest of the public and the industries to the technology. Consequently, we anticipate a challenging and interdisciplinary research agenda in blockchain systems, built upon a methodology that strives to capture the rich process resulting from the interplay between the behavior of agents and the dynamic interactions among them. To be effective, however, modeling studies providing insights into blockchain systems, and appropriate description of agents paired with a generic understanding of their components are needed. Such studies will create a more unified field of blockchain systems that advances our understanding and leads to further insight. According to this perspective, in this study, we propose using a generic multi-agent organizational modeling for studying blockchain systems, namely AGR4BS. Concretely, we use the Agent/Group/Role (AGR) organizational modeling approach to identify and represent the generic entities which are common to blockchain systems. We show through four real case studies how this generic model can be used to model different blockchain systems. We also show briefly how it can be used for modeling three well-known attacks on blockchain systems.

Funder

European Union’s Horizon 2020 research and innovation program

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Information Systems,Management Information Systems

Reference73 articles.

1. Bitcoin: A peer-to-peer electronic cash system https://bitcoin.org/bitcoin.pdf

2. On the Bitcoin Limitations to Deliver Fairness to Users;Gürcan,2017

3. Intelligent Agents in Co-Evolving Knowledge Networks

4. A Survey on Consensus Mechanisms and Mining Strategy Management in Blockchain Networks

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3