Early Diagnosis of Alzheimer’s Disease Using Cerebral Catheter Angiogram Neuroimaging: A Novel Model Based on Deep Learning Approaches

Author:

Gharaibeh MahaORCID,Almahmoud Mothanna,Ali Mostafa Z.ORCID,Al-Badarneh AmerORCID,El-Heis Mwaffaq,Abualigah LaithORCID,Altalhi Maryam,Alaiad Ahmad,Gandomi Amir H.ORCID

Abstract

Neuroimaging refers to the techniques that provide efficient information about the neural structure of the human brain, which is utilized for diagnosis, treatment, and scientific research. The problem of classifying neuroimages is one of the most important steps that are needed by medical staff to diagnose their patients early by investigating the indicators of different neuroimaging types. Early diagnosis of Alzheimer’s disease is of great importance in preventing the deterioration of the patient’s situation. In this research, a novel approach was devised based on a digital subtracted angiogram scan that provides sufficient features of a new biomarker cerebral blood flow. The used dataset was acquired from the database of K.A.U.H hospital and contains digital subtracted angiograms of participants who were diagnosed with Alzheimer’s disease, besides samples of normal controls. Since each scan included multiple frames for the left and right ICA’s, pre-processing steps were applied to make the dataset prepared for the next stages of feature extraction and classification. The multiple frames of scans transformed from real space into DCT space and averaged to remove noises. Then, the averaged image was transformed back to the real space, and both sides filtered with Meijering and concatenated in a single image. The proposed model extracts the features using different pre-trained models: InceptionV3 and DenseNet201. Then, the PCA method was utilized to select the features with 0.99 explained variance ratio, where the combination of selected features from both pre-trained models is fed into machine learning classifiers. Overall, the obtained experimental results are at least as good as other state-of-the-art approaches in the literature and more efficient according to the recent medical standards with a 99.14% level of accuracy, considering the difference in dataset samples and the used cerebral blood flow biomarker.

Funder

Taif University

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Information Systems,Management Information Systems

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3