Fuzzy Neural Network Expert System with an Improved Gini Index Random Forest-Based Feature Importance Measure Algorithm for Early Diagnosis of Breast Cancer in Saudi Arabia

Author:

Algehyne Ebrahem A.ORCID,Jibril Muhammad LawanORCID,Algehainy Naseh A.,Alamri Osama Abdulaziz,Alzahrani Abdullah K.

Abstract

Breast cancer is one of the common malignancies among females in Saudi Arabia and has also been ranked as the one most prevalent and the number two killer disease in the country. However, the clinical diagnosis process of any disease such as breast cancer, coronary artery diseases, diabetes, COVID-19, among others, is often associated with uncertainty due to the complexity and fuzziness of the process. In this work, a fuzzy neural network expert system with an improved gini index random forest-based feature importance measure algorithm for early diagnosis of breast cancer in Saudi Arabia was proposed to address the uncertainty and ambiguity associated with the diagnosis of breast cancer and also the heavier burden on the overlay of the network nodes of the fuzzy neural network system that often happens due to insignificant features that are used to predict or diagnose the disease. An Improved Gini Index Random Forest-Based Feature Importance Measure Algorithm was used to select the five fittest features of the diagnostic wisconsin breast cancer database out of the 32 features of the dataset. The logistic regression, support vector machine, k-nearest neighbor, random forest, and gaussian naïve bayes learning algorithms were used to develop two sets of classification models. Hence, the classification models with full features (32) and models with the 5 fittest features. The two sets of classification models were evaluated, and the results of the evaluation were compared. The result of the comparison shows that the models with the selected fittest features outperformed their counterparts with full features in terms of accuracy, sensitivity, and sensitivity. Therefore, a fuzzy neural network based expert system was developed with the five selected fittest features and the system achieved 99.33% accuracy, 99.41% sensitivity, and 99.24% specificity. Moreover, based on the comparison of the system developed in this work against the previous works that used fuzzy neural network or other applied artificial intelligence techniques on the same dataset for diagnosis of breast cancer using the same dataset, the system stands to be the best in terms of accuracy, sensitivity, and specificity, respectively. The z test was also conducted, and the test result shows that there is significant accuracy achieved by the system for early diagnosis of breast cancer.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Information Systems,Management Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3