Solution Processable CrN Thin Films: Thickness-Dependent Electrical Transport Properties

Author:

Hui ZhenzhenORCID,Zuo Xuzhong,Ye Longqiang,Wang Xuchun,Zhu Xuebin

Abstract

Thickness is a very important parameter with which to control the microstructures, along with physical properties in transition-metal nitride thin films. In work presented here, CrN films with different thicknesses (from 26 to 130 nm) were grown by chemical solution deposition. The films are pure phase and polycrystalline. Thickness dependence of microstructures and electrical transport behavior were studied. With the increase of films thickness, grain size and nitrogen content are increased, while resistivity, zero-field sensitivity and magnetoresistance are decreased. In the temperature range of 5–350 K, all samples exhibited semiconductor-like properties with dρ/dT < 0. For the range above and below the Néel temperature, the resistivity can be fitted by the thermal activation model and the two-dimensional weak localization (2D-WL) model, respectively. The ultra-low magnetoresistance at a low temperature under high magnetic fields with a large zero-field sensitivity was observed in the CrN thin films. The zero-field sensitivity can be effectively tuned to 10−2 K−1 at 5 K with a magnetoresistance of less than 1% at 2 K under 14 T by reasonably controlling the thickness.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3