Extracting Geoscientific Dataset Names from the Literature Based on the Hierarchical Temporal Memory Model

Author:

Wu Kai12,Chen Zugang1,Wu Xinqian2,Li Guoqing1,Li Jing1,Wang Shaohua1,Wang Haodong3,Feng Hang3ORCID

Affiliation:

1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

2. School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471023, China

3. School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China

Abstract

Extracting geoscientific dataset names from the literature is crucial for building a literature–data association network, which can help readers access the data quickly through the Internet. However, the existing named-entity extraction methods have low accuracy in extracting geoscientific dataset names from unstructured text because geoscientific dataset names are a complex combination of multiple elements, such as geospatial coverage, temporal coverage, scale or resolution, theme content, and version. This paper proposes a new method based on the hierarchical temporal memory (HTM) model, a brain-inspired neural network with superior performance in high-level cognitive tasks, to accurately extract geoscientific dataset names from unstructured text. First, a word-encoding method based on the Unicode values of characters for the HTM model was proposed. Then, over 12,000 dataset names were collected from geoscience data-sharing websites and encoded into binary vectors to train the HTM model. We conceived a new classifier scheme for the HTM model that decodes the predictive vector for the encoder of the next word so that the similarity of the encoders of the predictive next word and the real next word can be computed. If the similarity is greater than a specified threshold, the real next word can be regarded as part of the name, and a successive word set forms the full geoscientific dataset name. We used the trained HTM model to extract geoscientific dataset names from 100 papers. Our method achieved an F1-score of 0.727, outperforming the GPT-4- and Claude-3-based few-shot learning (FSL) method, with F1-scores of 0.698 and 0.72, respectively.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hainan Province of China

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3