Exploring Summer Variations of Driving Factors Affecting Land Use Zoning Based on the Surface Urban Heat Island in Chiang Mai, Thailand

Author:

Rinchumphu Damrongsak1ORCID,Srivanit Manat2ORCID,Iamchuen Niti3ORCID,Aryupong Chuchoke4

Affiliation:

1. Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand

2. Faculty of Architecture and Planning, Thammasat University, Pathumthani 12121, Thailand

3. School of Information and Communication Technology, University of Phayao, Phayao 56000, Thailand

4. Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand

Abstract

Numerous studies have examined land surface temperature (LST) changes in Thailand using remote sensing, but there has been little research on LST variations within urban land use zones. This study addressed this gap by analyzing summer LST changes in land use zoning (LUZ) blocks in the 2012 Chiang Mai Comprehensive Plan and their relationship with surface biophysical parameters (NDVI, NDBI, MNDWI). The approach integrated detailed zoning data with remote sensing for granular LST analysis. Correlation and stepwise regression analyses (SRA) revealed that NDBI significantly impacted LST in most block types, while NDVI and MNDWI also influenced LST, particularly in 2023. The findings demonstrated the complexity of LST dynamics across various LUZs in Chiang Mai, with SRA results explaining 45.7% to 53.2% of summer LST variations over three years. To enhance the urban environment, adaptive planning strategies for different block categories were developed and will be considered in the upcoming revision of the Chiang Mai Comprehensive Plan. This research offers a new method to monitor the urban heat island phenomenon at the block level, providing valuable insights for adaptive urban planning.

Funder

Chiang Mai University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3