Amelioration of Serum Aβ Levels and Cognitive Impairment in APPPS1 Transgenic Mice Following Symbiotic Administration

Author:

Traini Chiara1,Bulli Irene1ORCID,Sarti Giorgia1,Morecchiato Fabio2ORCID,Coppi Marco2ORCID,Rossolini Gian Maria2ORCID,Di Pilato Vincenzo3ORCID,Vannucchi Maria Giuliana1ORCID

Affiliation:

1. Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy

2. Microbiology and Virology Unit, Deparment of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy

3. UO Microbiologia, IRCC Ospedale Policlinico San Martino, Deaprtment of Surgical Science and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy

Abstract

Alzheimer’s disease (AD) is a neurodegenerative process responsible for almost 70% of all cases of dementia. The clinical signs consist in progressive and irreversible loss of memory, cognitive, and behavioral functions. The main histopathological hallmark is the accumulation of amyloid-ß (Aß) peptide fibrils in the brain. To date, the origin of Aß has not been determined. Recent studies have shown that the gut microbiota produces Aß, and dysbiotic states have been identified in AD patients and animal models of AD. Starting from the hypothesis that maintaining or restoring the microbiota’s eubiosis is essential to control Aß’s production and deposition in the brain, we used a mixture of probiotics and prebiotics (symbiotic) to treat APPPS1 male and female mice, an animal model of AD, from 2 to 8 months of age and evaluated their cognitive performances, mucus secretion, Aβ serum concentration, and microbiota composition. The results showed that the treatment was able to prevent the memory deficits, the reduced mucus secretion, the increased Aβ blood levels, and the imbalance in the gut microbiota found in APPPS1 mice. The present study demonstrates that the gut–brain axis plays a critical role in the genesis of cognitive impairment, and that modulation of the gut microbiota can ameliorate AD’s symptomatology.

Funder

Fondazione Cassa di Risparmio di Firenze

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3