METER.AC: Live Open Access Atmospheric Monitoring Data for Bulgaria with High Spatiotemporal Resolution

Author:

Terziyski AtanasORCID,Tenev Stoyan,Jeliazkov VedrinORCID,Jeliazkova NinaORCID,Kochev NikolayORCID

Abstract

Detailed atmospheric monitoring data are notoriously difficult to obtain for some geographic regions, while they are of paramount importance in scientific research, forecasting, emergency response, policy making, etc. We describe a continuously updated dataset, METER.AC, consisting of raw measurements of atmospheric pressure, temperature, relative humidity, particulate matter, and background radiation in about 100 locations in Bulgaria, as well as some derived values such as sea-level atmospheric pressure, dew/frost point, and hourly trends. The measurements are performed by low-power maintenance-free nodes with common hardware and software, which are specifically designed and optimized for this purpose. The time resolution of the measurements is 5 min. The short-term aim is to deploy at least one node per 100 km2, while uniformly covering altitudes between 0 and 3000 m asl with a special emphasis on remote mountainous areas. A full history of all raw measurements (non-aggregated in time and space) is publicly available, starting from September 2018. We describe the basic technical characteristics of our in-house developed equipment, data organization, and communication protocols as well as present some use case examples. The METER.AC network relies on the paradigm of the Internet of Things (IoT), by collecting data from various gauges. A guiding principle in this work is the provision of findable, accessible, interoperable, and reusable (FAIR) data. The dataset is in the public domain, and it provides resources and tools enabling citizen science development in the context of sustainable development.

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Science Applications,Information Systems

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3