Simulator for Interactive and Effective Organization of Things in Edge Cluster Computing

Author:

Kim Woojae,Jung Inbum

Abstract

Edge computing is intended to process events that occur at the endpoint of the Internet of Things (IoT) network quickly and intelligently. Edge regions must be organized effectively to facilitate cooperation so that the intention of edge computing can be realized. However, inevitably, many human and material resources are required in the process of arranging things in the edge area to confirm the appropriateness of the thing operation. To address this problem, we proposed a simulator that created a virtual space for edge computing and provided an interactive role and effective organization for edge things. The proposed simulator was aimed at Raspberry Pi as the physical hardware target. To prove the accuracy of the proposed simulator, the similarity between the proposed simulator and the physical target Raspberry Pi was evaluated based on three metrics while executing several applications. In the experiment, several edge-computing service applications were performed in various cluster architecture types formed by the proposed simulator. To support effective resource usage and fast real-time response for edge computing, the proposed simulator identified a suitable number of things in forming the edge cluster.

Funder

Ministry of Science and ICT, South Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3