Smart Delivery Assignment through Machine Learning and the Hungarian Algorithm

Author:

Vásconez Juan Pablo1ORCID,Schotborgh Elias1ORCID,Vásconez Ingrid Nicole2ORCID,Moya Viviana3ORCID,Pilco Andrea3ORCID,Menéndez Oswaldo4ORCID,Guamán-Rivera Robert5ORCID,Guevara Leonardo6ORCID

Affiliation:

1. Faculty of Engineering, Universidad Andres Bello, Santiago 7500735, Chile

2. Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2390136, Chile

3. Facultad de Ciencias Técnicas, Universidad Internacional Del Ecuador UIDE, Quito 170411, Ecuador

4. Departamento de Ingeniería de Sistemas y Computación, Universidad Católica del Norte, Antofagasta 1249004, Chile

5. Institute of Engineering Sciences, Universidad de O’Higgins, Rancagua 2820000, Chile

6. Lincoln Institute for Agri-Food Technology, University of Lincoln, Lincoln LN2 2LG, UK

Abstract

Intelligent transportation and advanced mobility techniques focus on helping operators to efficiently manage navigation tasks in smart cities, enhancing cost efficiency, increasing security, and reducing costs. Although this field has seen significant advances in developing large-scale monitoring of smart cities, several challenges persist concerning the practical assignment of delivery personnel to customer orders. To address this issue, we propose an architecture to optimize the task assignment problem for delivery personnel. We propose the use of different cost functions obtained with deterministic and machine learning techniques. In particular, we compared the performance of linear and polynomial regression methods to construct different cost functions represented by matrices with orders and delivery people information. Then, we applied the Hungarian optimization algorithm to solve the assignment problem, which optimally assigns delivery personnel and orders. The results demonstrate that when used to estimate distance information, linear regression can reduce estimation errors by up to 568.52 km (1.51%) for our dataset compared to other methods. In contrast, polynomial regression proves effective in constructing a superior cost function based on time information, reducing estimation errors by up to 17,143.41 min (11.59%) compared to alternative methods. The proposed approach aims to enhance delivery personnel allocation within the delivery sector, thereby optimizing the efficiency of this process.

Funder

ANID

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3