Planning Principles for Integrating Community Empowerment into Zero-Net Carbon Transformation

Author:

Li LiwenORCID,Lange Klaus W.

Abstract

The adoption of the UN 2030 Agenda and the Sustainable Development Goals is a landmark in international sustainability politics. For example, Europe has set ambitious targets to achieve 100 climate-neutral and smart cities by 2030. However, numerous case studies from different countries have found that accelerating the transition to net-zero carbon emissions is easily hampered by the lack of a coherent systems framework, and that implementation gaps remain at the community level. These barriers are often due to a lack of an adequate end-user (i.e., household) input and early planning participation. This work therefore aims to improve on conventional planning methods that do not reflect innovative technologies with uncertainty and may not be applicable due to the lack of community empowerment, which is a dynamic learning and intervention opportunity for end-users at different planning stages (i.e., outreach, survey, planning, implementation, management, and maintenance). Using the lessons learned from participatory action research, whereby the author was involved as a project director throughout the planning and design process, we identified a six-step cycle principle. The steps are (1) collective action commitments, (2) local values and resource identification, (3) carbon footprint inventory, (4) optimized integration of environment, economy, and energy action plans, (5) Flexible strategic energy system plans, and (6) digital performance monitoring. Ultimately, the outcomes provide application support for policymakers and planners and stimulate community engagement to contribute to the achievement of zero net carbon emissions.

Funder

National Science and Technology Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Urban Studies

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3