Delay and Energy Efficient Offloading Strategies for an IoT Integrated Water Distribution System in Smart Cities

Author:

Velayudhan Nibi Kulangara1,S Aiswarya1ORCID,Devidas Aryadevi Remanidevi1,Ramesh Maneesha Vinodini1

Affiliation:

1. Center for Wireless Networks & Applications (WNA), Amrita Vishwa Vidyapeetham, Amritapuri 690525, India

Abstract

In the fast-moving world of information and communications technologies, one significant issue in metropolitan cities is water scarcity and the need for an intelligent water distribution system for sustainable water management. An IoT-based monitoring system can improve water distribution system management and mitigate challenges in the distribution network networks such as leakage, breakage, theft, overflow, dry running of pumps and so on. However, the increase in the number of communication and sensing devices within smart cities has evoked challenges to existing communication networks due to the increase in delay and energy consumption within the network. The work presents different strategies for efficient delay and energy offloading in IoT-integrated water distribution systems in smart cities. Different IoT-enabled communication network topology diagrams are proposed, considering the different water network design parameters, land cover patterns and wireless channels for communication. From these topologies and by considering all the relevant communication parameters, the optimum communication network architecture to continuously monitor a water distribution network in a metropolitan city in India is identified. As a case study, an IoT design and analysis model is studied for a secondary metropolitan city in India. The selected study area is in Kochi, India. Based on the site-specific model and land use and land cover pattern, delay and energy modeling of the IoT-based water distribution system is discussed. Algorithms for node categorisation and edge-to-fog allocation are discussed, and numerical analyses of delay and energy models are included. An approximation of the delay and energy of the network is calculated using these models. On the basis of these study results, and state transition diagrams, the optimum placement of fog nodes linked with edge nodes and a cloud server could be carried out. Also, by considering different scenarios, up to a 40% improvement in energy efficiency can be achieved by incorporating a greater number of states in the state transition diagram. These strategies could be utilized in implementing delay and energy-efficient IoT-enabled communication networks for site-specific applications.

Funder

Department of Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Urban Studies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3