Efficient Decoder and Intermediate Domain for Semantic Segmentation in Adverse Conditions

Author:

Chen Xiaodong1,Jiang Nan1,Li Yifeng2,Cheng Guangliang2,Liang Zheng3,Ying Zuobin4,Zhang Qi4,Zhao Runsheng5

Affiliation:

1. School of Statistics, Renmin University of China, Beijing 100872, China

2. School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China

3. Celedyne Technologies Co., Ltd., Shenzhen 518057, China

4. Faculty of Data Science, City University of Macau, Macau SAR 999078, China

5. National Instruments Corporation, Shanghai 201210, China

Abstract

In smart city contexts, traditional methods for semantic segmentation are affected by adverse conditions, such as rain, fog, or darkness. One challenge is the limited availability of semantic segmentation datasets, specifically for autonomous driving in adverse conditions, and the high cost of labeling such datasets. To address this problem, unsupervised domain adaptation (UDA) is commonly employed. In UDA, the source domain contains data from good weather conditions, while the target domain contains data from adverse weather conditions. The Adverse Conditions Dataset with Correspondences (ACDC) provides reference images taken at different times but in the same location, which can serve as an intermediate domain, offering additional semantic information. In this study, we introduce a method that leverages both the intermediate domain and frequency information to improve semantic segmentation in smart city environments. Specifically, we extract the region with the largest difference in standard deviation and entropy values from the reference image as the intermediate domain. Secondly, we introduce the Fourier Exponential Decreasing Sampling (FEDS) algorithm to facilitate more reasonable learning of frequency domain information. Finally, we design an efficient decoder network that outperforms the DAFormer network by reducing network parameters by 28.00%. When compared to the DAFormer work, our proposed approach demonstrates significant performance improvements, increasing by 6.77%, 5.34%, 6.36%, and 5.93% in mean Intersection over Union (mIoU) for Cityscapes to ACDC night, foggy, rainy, and snowy, respectively.

Funder

FDCT

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Urban Studies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3