Abstract
In recent years, there has been a growing interest in travel applications that provide on-site personalized tourist spot recommendations. While generally helpful, most available options offer choices based solely on static information on places of interest without consideration of such dynamic factors as weather, time of day, and congestion, and with a focus on helping the tourist decide what single spot to visit next. Such limitations may prevent visitors from optimizing the use of their limited resources (i.e., time and money). Some existing studies allow users to calculate a semi-optimal tour visiting multiple spots in advance, but their on-site use is difficult due to the large computation time, no consideration of dynamic factors, etc. To deal with this situation, we formulate a tour score approach with three components: static tourist information on the next spot to visit, dynamic tourist information on the next spot to visit, and an aggregate measure of satisfaction associated with visiting the next spot and the set of subsequent spots to be visited. Determining the tour route that produces the best overall tour score is an NP-hard problem for which we propose three algorithms variations based on the greedy method. To validate the usefulness of the proposed approach, we applied the three algorithms to 20 points of interest in Higashiyama, Kyoto, Japan, and confirmed that the output solution was superior to the model route for Kyoto, with computation times of the three algorithms of 1.9±0.1, 2.0±0.1, and 27.0±1.8 s.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献