A Reference Architecture for Interoperable Reservation Systems in Electric Vehicle Charging

Author:

Basmadjian RobertORCID,Kirpes BenediktORCID,Mrkos JanORCID,Cuchý Marek

Abstract

The charging infrastructure for electric vehicles faces the challenges of insufficient capacity and long charging duration. These challenges decrease the electric vehicle users’ satisfaction and lower the profits of infrastructure providers. Reservation systems can mitigate these issues. We introduce a reference architecture for interoperable reservation systems. The advantages of the proposed architecture are: it (1) considers the needs of the most relevant electric mobility stakeholders, (2) satisfies the interoperability requirements of existing technological heterogeneity, and (3) provides a classification of reservation types based on a morphological methodology. We instantiate the reference architecture and verify its interoperability and fulfillment of stakeholder requirements. Further, we demonstrate a proof-of-concept by instantiating and implementing an ad-hoc reservation approach. Our validation was based on simulations of real-world case studies for various reservation deployments in the Netherlands. We conclude that, in certain high demand situations, reservations can save significant time for electric vehicle trips. The findings indicate that a reservation system does not directly increase the utilization of the charging infrastructure.

Publisher

MDPI AG

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3