Abstract
Current terrestrial mobile communications networks can’t provide worldwide coverage. Satellite communications are expensive, and terminals are large and heavy. Worldwide mobile coverage requires the use of satellites providing an appropriate QoS, including polar regions. The analysis of the potential satellite constellations demonstrates that LEO one is the best solution. A new generation of low cost, small size, lightweight and global mobile coverage LEO satellites is emerging. The main limitation of the terminals is the antenna size factor, and innovative antennas must be developed to meet this goal. This paper investigates the technologies and techniques for designing and developing antennas aimed at LEO satellite communications in Smart Cities and beyond, which are especially beneficial for mobile communications in areas without 4G/5G coverage. The paper focuses on the terrestrial segment and future mobile devices, remarking the design constraints. In this scenario, the paper reviews the most relevant technologies and techniques used to design suitable antennas. The investigation analyses the state-of-the-art and most recent advances in the design of antennas operating in the Ku-band. The main contribution of the authors is a novel antenna design approach based on SIW technology. The antenna features are compared with other approaches, highlighting the benefits, advantages and drawbacks. As a conclusion, the proposed antenna demonstrates to be a good solution to meet the design constraints for such an application: light, low cost, small size factor.
Reference41 articles.
1. White paper: Smart Cities Applications and Requirementshttps://grow.tecnico.ulisboa.pt/wp-content/uploads/2014/03/White_Paper_Smart_Cities_Applications.pdf
2. An intelligent routing scheme effectively utilizing mass storage embedded on satellites to mitigate network congestions
3. The Number of Satellites Orbiting Earth Could Quintuple in the Next Decadehttps://www.technologyreview.com/2019/06/26/755/satellite-constellations-orbiting-earth-quintuple/
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献