Sustainable City: Energy Usage Prediction Method for Electrified Refuse Collection Vehicles

Author:

Zhao Rui,Stincescu Tudor,Ballantyne Erica E. F.ORCID,Stone David A.

Abstract

With the initiative of sustainable smart city space, services and structures (3S), progress towards zero-emission municipal services has advanced the deployment of electric refuse collection vehicles (eRCVs). However, eRCVs are commonly equipped with oversized batteries which not only contribute to the majority of the weight of the vehicles but also remain a consistent weight, independent of the stage of charge (SoC), thus crucially jeopardising the significance of eRCVs in sustainability and economic strategies. Hence, customising the battery capacity in such a way that minimises its weight while storing ample energy for stalwart serviceability could significantly enhance its sustainability. In this study, taking only addresses as input, through an emergent two-stage data analysis, the energy required to collect refuse from a group of addresses was predicted. Therefore, predictions of the battery capacity requirement for the target location are possible. The theories and techniques presented in this paper were evaluated using real-life data from eRCV trials. For the same group of addresses, predicted results show an averaged error rate of 8.44%, which successfully demonstrates that using the proposed address-driven energy prediction approach, the energy required to collect refuse from a set of addresses can be predicted, which can provide a means to optimise the vehicle’s battery requirement.

Publisher

MDPI AG

Reference39 articles.

1. UK HGV Market Declines in 2017 but Demand for Artics and Refuse Trucks Bucks Trend http://www.smmt.co.uk/2018/02/uk-hgv-market-declines-2017-demand-artics-refuse-trucks-bucks-trend

2. A Review of Technical Standards for Smart Cities

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3