An Internet of Thing Architecture Based on Message Queuing Telemetry Transport Protocol and Node-RED: A Case Study for Monitoring Radon Gas

Author:

Medina-Pérez Alexandra,Sánchez-Rodríguez DavidORCID,Alonso-González ItziarORCID

Abstract

This work aims to monitor air quality in places where humans spend most of their time, such as workplaces and homes. Radon gas is a naturally occurring, colourless, odourless and tasteless gas that accumulates in enclosed spaces. It is a radioactive element produced by the decay of its natural parent elements, uranium and thorium, which is harmful to our respiratory system when inhaled. The Internet of Things (IoT) is the key to the problems of contemporary life; we are witnessing an emerging connected world, and these architectures have the potential by using sensors to take data from the physical world, transfer it over the network and store it for further decision making or action. The proposal of this work is based on a radon sensor connected to an IoT device, the Message Queuing Telemetry Transport protocol (MQTT), the Node-RED for managing data flows and a database management system on a web server. The information collected by the sensor is sent by the IoT device to be processed by Node-RED. The obtained data is stored in a database to be represented on a web server. Therefore, this work includes a case study where the technologies involved in the indoor radon gas monitoring system are presented. It is a way to perform radon gas measurements automatically. The final application would allow: displaying radon concentrations on a map with placemarks and updating the information in real-time. The database could record data from other radon sensors that any user wants to associate with this website.

Publisher

MDPI AG

Reference26 articles.

1. Internet of Things

2. A survey on Internet of Things architectures

3. The internet of things: An overview;Rose;Internet Soc.,2015

4. WHO Handbook on Indoor Radon: A Public Health Perspective,2009

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3