Non-Linearity Flux of Fractional Transport Density Equation in Traffic Flow with Solutions

Author:

Soliby Rfaat MonerORCID,Jamaian Siti SuhanaORCID

Abstract

In the present paper, we derive and solve the space-fractional traffic flow model which is considered as a generalization of the transport density equation. Based on the fundamental physical principles on finite-length highway where the number of vehicles is conserved, without entrances or exits, we construct a fractional continuity equation. As a limitation of the classical calculus, the continuity equation is constructed based on truncating after the first order of Taylor expansion, which means that the change in the number of vehicles is linear over the finite-length highway. However, in fractional calculus, we prove that nonlinear flow is a result of truncating the fractional Taylor polynomial after the second term with zero error. Therefore, the new fractional traffic flow model is free from being linear, and the space now is described by the fractional powers of coordinates, provided with a single variable measure. Further, some exact solutions of the fractional model are generated by the method of characteristics. Remarkably, these solutions have significant physical implications to help to make the proper decisions for constructing traffic signals in a smart city.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Urban Studies

Reference44 articles.

1. Fractal traffic flows in high-speed communications networks;Erramilli;Fractals,1994

2. Anomalous diffusion modeling by fractal and fractional derivatives;Chen;Comput. Math. Appl.,2010

3. Magin, R.L. (2006). Fractional Calculus in Bioengineering, Begell House.

4. Solvability and stability of a fractional dynamical system of the growth of COVID19 with approximate solution by fractional Chebyshev polynomials;Hadid;Adv. Differ. Equ.,2020

5. On solutions of fractional-order gas dynamics equation by effective techniques;Iqbal;J. Funct. Spaces,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3