A Particle Swarm Optimization Algorithm for the Solution of the Transit Network Design Problem

Author:

Cipriani Ernesto,Fusco GaetanoORCID,Patella Sergio Maria,Petrelli Marco

Abstract

The research presented in this paper proposes a Particle Swarm Optimization (PSO) approach for solving the transit network design problem in large urban areas. The solving procedure is divided in two main phases: in the first step, a heuristic route generation algorithm provides a preliminary set of feasible and comparable routes, according to three different design criteria; in the second step, the optimal network configuration is found by applying a PSO-based procedure. This study presents a comparison between the results of the PSO approach and the results of a procedure based on Genetic Algorithms (GAs). Both methods were tested on a real-size network in Rome, in order to compare their efficiency and effectiveness in optimal transit network calculation. The results show that the PSO approach promises more efficiency and effectiveness than GAs in producing optimal solutions.

Publisher

MDPI AG

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Addressing Overcrowding;Smart Sensors for Industry 4.0;2024-07-26

2. Multi-objective planning of electric bus systems in cities with trolleybus infrastructure networks;Sustainable Cities and Society;2024-04

3. A transit network design and frequency setting model with graph neural network and deep reinforcement learning;Sixth International Conference on Computer Information Science and Application Technology (CISAT 2023);2023-10-11

4. Correspondence distribution over a network in designing public urban passenger transportation tasks;The Russian Automobile and Highway Industry Journal;2023-07-17

5. A Reinforcement Learning approach for bus network design and frequency setting optimisation;Public Transport;2023-02-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3