Network Security Challenges and Countermeasures for Software-Defined Smart Grids: A Survey

Author:

Agnew Dennis1ORCID,Boamah Sharon1ORCID,Bretas Arturo123ORCID,McNair Janise1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32603, USA

2. Electric Grid Security and Communications, Sandia National Laboratories, Albuquerque, NM 87123, USA

3. G2Elab, Grenoble INP, CNRS, Université Grenoble Alpes, 38000 Grenoble, France

Abstract

The rise of grid modernization has been prompted by the escalating demand for power, the deteriorating state of infrastructure, and the growing concern regarding the reliability of electric utilities. The smart grid encompasses recent advancements in electronics, technology, telecommunications, and computer capabilities. Smart grid telecommunication frameworks provide bidirectional communication to facilitate grid operations. Software-defined networking (SDN) is a proposed approach for monitoring and regulating telecommunication networks, which allows for enhanced visibility, control, and security in smart grid systems. Nevertheless, the integration of telecommunications infrastructure exposes smart grid networks to potential cyberattacks. Unauthorized individuals may exploit unauthorized access to intercept communications, introduce fabricated data into system measurements, overwhelm communication channels with false data packets, or attack centralized controllers to disable network control. An ongoing, thorough examination of cyber attacks and protection strategies for smart grid networks is essential due to the ever-changing nature of these threats. Previous surveys on smart grid security lack modern methodologies and, to the best of our knowledge, most, if not all, focus on only one sort of attack or protection. This survey examines the most recent security techniques, simultaneous multi-pronged cyber attacks, and defense utilities in order to address the challenges of future SDN smart grid research. The objective is to identify future research requirements, describe the existing security challenges, and highlight emerging threats and their potential impact on the deployment of software-defined smart grid (SD-SG).

Funder

National Science Foundation

L3 Harris

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3