Advancing Urban Resilience Amid Rapid Urbanization: An Integrated Interdisciplinary Approach for Tomorrow’s Climate-Adaptive Smart Cities—A Case Study of Wuhan, China

Author:

Makvandi Mehdi123ORCID,Li Wenjing1,Li Yu1,Wu Hao1,Khodabakhshi Zeinab2,Xu Xinhui1,Yuan Philip1

Affiliation:

1. College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China

2. College of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China

3. College of Architecture and Urban Planning, Huazhong University of Science and Technology, Wuhan 430070, China

Abstract

This research addresses the urgent challenges posed by rapid urbanization and climate change through an integrated interdisciplinary approach combining advanced technologies with rigorous scientific exploration. The comprehensive analysis focused on Wuhan, China, spanning decades of meteorological and land-use data to trace extreme urbanization trajectories and reveal intricate temporal and spatial patterns. Employing the innovative 360° radial Fibonacci geometric growth framework, the study facilitated a meticulous dissection of urban morphology at granular scales, establishing a model that combined fixed and mobile observational techniques to uncover climatic shifts and spatial transformations. Geographic information systems and computational fluid dynamics were pivotal tools used to explore the intricate interplay between urban structures and their environments. These analyses elucidated the nuanced impact of diverse morphosectors on local conditions. Furthermore, genetic algorithms were harnessed to distill meaningful relationships from the extensive data collected, optimizing spatial arrangements to enhance urban resilience and sustainability. This pioneering interdisciplinary approach not only illuminates the complex dynamics of urban ecosystems but also offers transformative insights for designing smarter, more adaptable cities. The findings underscore the critical role of green spaces in mitigating urban heat island effects. This highlights the imperative for sustainable urban planning to address the multifaceted challenges of the 21st century, promoting long-term environmental sustainability and urban health, particularly in the context of tomorrow’s climate-adaptive smart cities.

Funder

Shanghai Science and Technology Committee

National Key R&D Program of China

National Natural Science Foundation of China

Shanghai Municipal Science and Technology Major Project

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3