Multi-Type Structural Damage Image Segmentation via Dual-Stage Optimization-Based Few-Shot Learning

Author:

Zhong Jiwei12,Fan Yunlei3,Zhao Xungang1,Zhou Qiang1,Xu Yang345ORCID

Affiliation:

1. National Key Laboratory of Bridge Intelligence and Green Construction, Wuhan 430034, China

2. School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China

3. School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China

4. Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin 150090, China

5. Key Lab of Structures Dynamics Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150090, China

Abstract

The timely and accurate recognition of multi-type structural surface damage (e.g., cracks, spalling, corrosion, etc.) is vital for ensuring the structural safety and service performance of civil infrastructure and for accomplishing the intelligent maintenance of smart cities. Deep learning and computer vision have made profound impacts on automatic structural damage recognition using nondestructive test techniques, especially non-contact vision-based algorithms. However, the recognition accuracy highly depends on the training data volume and damage completeness in the conventional supervised learning pipeline, which significantly limits the model performance under actual application scenarios; the model performance and stability for multi-type structural damage categories are still challenging. To address the above issues, this study proposes a dual-stage optimization-based few-shot learning segmentation method using only a few images with supervised information for multi-type structural damage recognition. A dual-stage optimization paradigm is established encompassing an internal network optimization based on meta-task and an external meta-learning machine optimization based on meta-batch. The underlying image features pertinent to various structural damage types are learned as prior knowledge to expedite adaptability across diverse damage categories via only a few samples. Furthermore, a mathematical framework of optimization-based few-shot learning is formulated to intuitively express the perception mechanism. Comparative experiments are conducted to verify the effectiveness and necessity of the proposed method on a small-scale multi-type structural damage image set. The results show that the proposed method could achieve higher segmentation accuracies for various types of structural damage than directly training the original image segmentation network. In addition, the generalization ability for the unseen structural damage category is also validated. The proposed method provides an effective solution to achieve image-based structural damage recognition with high accuracy and robustness for bridges and buildings, which assists the unmanned intelligent inspection of civil infrastructure using drones and robotics in smart cities.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Heilongjiang Provincial Natural Science Foundation

Heilongjiang Provincial Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

China University Innovation Fund - A New Generation of Information Technology Innovation Project

Open Funding of National Key Laboratory of Intelligent and Green Bridge Construction

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3