AI-Driven Prediction and Mapping of Soil Liquefaction Risks for Enhancing Earthquake Resilience in Smart Cities

Author:

Katsuumi Arisa1,Cong Yuxin1,Inazumi Shinya2ORCID

Affiliation:

1. Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan

2. College of Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan

Abstract

In response to increasing urbanization and the need for infrastructure resilient to natural hazards, this study introduces an AI-driven predictive model designed to assess the risk of soil liquefaction. Utilizing advanced ensemble machine learning techniques, the model integrates geotechnical and geographical data to accurately predict the potential for soil liquefaction in urban areas, with a specific focus on Yokohama, Japan. This methodology leverages comprehensive datasets from geological surveys and seismic activity to enhance urban planning and infrastructure development in smart cities. The primary outputs include detailed soil liquefaction risk maps that are essential for effective urban risk management. These maps support urban planners and engineers in making informed decisions, prioritizing safety, and promoting sustainability. The model employs a robust combination of artificial neural networks and gradient boosting decision trees to analyze and predict data points, assessing soil susceptibility to liquefaction during seismic events. Notably, the model achieves high accuracy in predicting soil classifications and N-values, which are critical for evaluating soil liquefaction risk. Validation against an extensive dataset from geotechnical surveys confirms the model’s practical effectiveness. Moreover, the results highlight the transformative potential of AI in enhancing geotechnical risk assessments and improving the resilience of urban areas against natural hazards.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3