Enhanced Tumor Imaging Using Glucosamine-Conjugated Polyacrylic Acid-Coated Ultrasmall Gadolinium Oxide Nanoparticles in Magnetic Resonance Imaging

Author:

Liu Shuwen,Yue Huan,Ho Son LongORCID,Kim SoyeonORCID,Park Ji AeORCID,Tegafaw TirusewORCID,Ahmad Mohammad YaseenORCID,Kim Seungho,Saidi Abdullah Khamis Ali AlORCID,Zhao Dejun,Liu Ying,Nam Sung-WookORCID,Chae Kwon SeokORCID,Chang Yongmin,Lee Gang HoORCID

Abstract

Owing to a higher demand for glucosamine (GlcN) in metabolic processes in tumor cells than in normal cells (i.e., GlcN effects), tumor imaging in magnetic resonance imaging (MRI) can be highly improved using GlcN-conjugated MRI contrast agents. Here, GlcN was conjugated with polyacrylic acid (PAA)-coated ultrasmall gadolinium oxide nanoparticles (UGONs) (davg = 1.76 nm). Higher positive (brighter or T1) contrast enhancements at various organs including tumor site were observed in human brain glioma (U87MG) tumor-bearing mice after the intravenous injection of GlcN-PAA-UGONs into their tail veins, compared with those obtained with PAA-UGONs as control, which were rapidly excreted through the bladder. Importantly, the contrast enhancements of the GlcN-PAA-UGONs with respect to those of the PAA-UGONs were the highest in the tumor site owing to GlcN effects. These results demonstrated that GlcN-PAA-UGONs can serve as excellent T1 MRI contrast agents in tumor imaging via GlcN effects.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference57 articles.

1. Precision medicine and molecular imaging: New targeted approaches toward cancer therapeutic and diagnosis;Am. J. Nucl. Med. Mol. Imaging,2016

2. Molecular imaging for personalized cancer care;Mol. Oncol.,2012

3. Molecular magnetic resonance imaging in cancer;J. Transl. Med.,2015

4. Cancer diagnosis and treatment guidance: Role of MRI and MRI probes in the era of molecular imaging;Curr. Pharm. Biotechnol.,2013

5. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumor sites;J. Pharm. Pharmacol.,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3