Abstract
In response to exercise, the oxidative capacity of mitochondria within skeletal muscle increases through the coordinated expression of mitochondrial proteins in a process termed mitochondrial biogenesis. Controlling the expression of mitochondrial proteins are transcription factors—a group of proteins that regulate messenger RNA transcription from DNA in the nucleus and mitochondria. To fulfil other functions or to limit gene expression, transcription factors are often localised away from DNA to different subcellular compartments and undergo rapid movement or accumulation only when required. Although many transcription factors involved in exercise-induced mitochondrial biogenesis have been identified, numerous conflicting findings and gaps exist within our knowledge of their subcellular movement. This review aims to summarise and provide a critical analysis of the published literature regarding the exercise-induced movement of transcription factors involved in mitochondria biogenesis in skeletal muscle.
Funder
Australian Research Council
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献