Genome-Wide Identification and Expression Analysis of Heat Shock Protein 70 (HSP70) Gene Family in Pumpkin (Cucurbita moschata) Rootstock under Drought Stress Suggested the Potential Role of these Chaperones in Stress Tolerance

Author:

Davoudi Marzieh,Chen JinfengORCID,Lou QunfengORCID

Abstract

Heat shock protein 70s (HSP70s) are highly conserved proteins that are involved in stress responses. These chaperones play pivotal roles in protein folding, removing the extra amounts of oxidized proteins, preventing protein denaturation, and improving the antioxidant system activities. This conserved family has been characterized in several crops under drought stress conditions. However, there is no study on HSP70s in pumpkin (Cucurbita moschata). Therefore, we performed a comprehensive analysis of this gene family, including phylogenetic relationship, motif and gene structure analysis, gene duplication, collinearity, and promoter analysis. In this research, we found 21 HSP70s that were classified into five groups (from A to E). These genes were mostly localized in the cytoplasm, chloroplast, mitochondria, nucleus, and endoplasmic reticulum (ER). We could observe more similarity in closely linked subfamilies in terms of motifs, the number of introns/exons, and the corresponding cellular compartments. According to the collinearity analysis, gene duplication had occurred as a result of purifying selection. The results showed that the occurrence of gene duplication for all nine gene pairs was due to segmental duplication (SD). Synteny analysis revealed a closer relationship between pumpkin and cucumber than pumpkin and Arabidopsis. Promoter analysis showed the presence of various cis-regulatory elements in the up-stream region of the HSP70 genes, such as hormones and stress-responsive elements, indicating a potential role of this gene family in stress tolerance. We furtherly performed the gene expression analysis of the HSP70s in pumpkin under progressive drought stress. Pumpkin is widely used as a rootstock to improve stress tolerance, as well as fruit quality of cucumber scion. Since stress-responsive mobile molecules translocate through vascular tissue from roots to the whole plant body, we used the xylem of grafted materials to study the expression patterns of the HSP70 (potentially mobile) gene family. The results indicated that all CmoHSP70s had very low expression levels at 4 days after stress (DAS). However, the genes showed different expression patterns by progressing he drought period. For example, the expression of CmoHSP70-4 (in subgroup E) and CmoHSP70-14 (in subgroup C) sharply increased at 6 and 11 DAS, respectively. However, the expression of all genes belonging to subgroup A did not change significantly in response to drought stress. These findings indicated the diverse roles of this gene family under drought stress and provided valuable information for further investigation on the function of this gene family, especially under stressful conditions.

Funder

the Key Research and Development Program

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3