Comprehensive Profiling of Paper Mulberry (Broussonetia papyrifera) Crotonylome Reveals the Significance of Lysine Crotonylation in Young Leaves

Author:

Dong Yibo,Chen Chao

Abstract

Lysine crotonylation is a newly discovered and reversible posttranslational modification involved in various biological processes, especially metabolism regulation. A total of 5159 lysine crotonylation sites in 2272 protein groups were identified. Twenty-seven motifs were found to be the preferred amino acid sequences for crotonylation sites. Functional annotation analyses revealed that most crotonylated proteins play important roles in metabolic processes and photosynthesis. Bioinformatics analysis suggested that lysine crotonylation preferentially targets a variety of important biological processes, including ribosome, glyoxylate and dicarboxylate metabolism, carbon fixation in photosynthetic organisms, proteasome and the TCA cycle, indicating lysine crotonylation is involved in the common mechanism of metabolic regulation. A protein interaction network analysis revealed that diverse interactions are modulated by protein crotonylation. These results suggest that lysine crotonylation is involved in a variety of biological processes. HSP70 is a crucial protein involved in protecting plant cells and tissues from thermal or abiotic stress responses, and HSP70 protein was found to be crotonylated in paper mulberry. This systematic analysis provides the first comprehensive analysis of lysine crotonylation in paper mulberry and provides important resources for further study on the regulatory mechanism and function of the lysine crotonylated proteome.

Funder

The Science and Technology Program of Guizhou Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3