An Unexpected Regulatory Sequence from Rho-Related GTPase6 Confers Fiber-Specific Expression in Upland Cotton

Author:

Li Baoxia,Zhang LiuqinORCID,Xi Jing,Hou Lei,Fu Xingxian,Pei Yan,Zhang MiORCID

Abstract

Cotton fibers, single seed trichomes derived from ovule epidermal cells, are the major source of global textile fibers. Fiber-specific promoters are desirable to study gene function and to modify fiber properties during fiber development. Here, we revealed that Rho-related GTPase6 (GhROP6) was expressed preferentially in developing fibers. A 1240 bp regulatory region of GhROP6, which contains a short upstream regulatory sequence, the first exon, and the partial first intron, was unexpectedly isolated and introduced into transgenic cotton for analyzing promoter activity. The promoter of GhROP6 (proChROP6) conferred a specific expression in ovule surface, but not in the other floral organs and vegetative tissues. Reverse transcription PCR analysis indicated that proGhROP6 directed full-length transcription of the fused ß-glucuronidase (GUS) gene. Further investigation of GUS staining showed that proChROP6 regulated gene expression in fibers and ovule epidermis from fiber initiation to cell elongation stages. The preferential activity was enriched in fiber cells after anthesis and reached to peak on flowering days. By comparison, proGhROP6 was a mild promoter with approximately one-twenty-fifth of the strength of the constitutive promoter CaMV35S. The promoter responded to high-dosage treatments of auxin, gibberellin and salicylic acid and slightly reduced GUS activity under the in vitro treatment. Collectively, our data suggest that the GhROP6 promoter has excellent activity in initiating fibers and has potential for bioengineering of cotton fibers.

Funder

National Natural Science Foundation of China

Chongqing Talents: Exceptional Young Talents Project

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3