In Vivo Biocompatibility Investigation of an Injectable Calcium Carbonate (Vaterite) as a Bone Substitute including Compositional Analysis via SEM-EDX Technology

Author:

Unger Ronald E.ORCID,Stojanovic Sanja,Besch Laura,Alkildani Said,Schröder Romina,Jung OleORCID,Bogram Caroline,Görke OliverORCID,Najman StevoORCID,Tremel WolfgangORCID,Barbeck MikeORCID

Abstract

Injectable bone substitutes (IBS) are increasingly being used in the fields of orthopedics and maxillofacial/oral surgery. The rheological properties of IBS allow for proper and less invasive filling of bony defects. Vaterite is the most unstable crystalline polymorph of calcium carbonate and is known to be able to transform into hydroxyapatite upon contact with an organic fluid (e.g., interstitial body fluid). Two different concentrations of hydrogels based on poly(ethylene glycol)-acetal-dimethacrylat (PEG-a-DMA), i.e., 8% (w/v) (VH-A) or 10% (w/v) (VH-B), were combined with vaterite nanoparticles and implanted in subcutaneous pockets of BALB/c mice for 15 and 30 days. Explants were prepared for histochemical staining and immunohistochemical detection methods to determine macrophage polarization, and energy-dispersive X-ray analysis (EDX) to analyze elemental composition was used for the analysis. The histopathological analysis revealed a comparable moderate tissue reaction to the hydrogels mainly involving macrophages. Moreover, the hydrogels underwent a slow cellular infiltration, revealing a different degradation behavior compared to other IBS. The immunohistochemical detection showed that M1 macrophages were mainly found at the material surfaces being involved in the cell-mediated degradation and tissue integration, while M2 macrophages were predominantly found within the reactive connective tissue. Furthermore, the histomorphometrical analysis revealed balanced numbers of pro- and anti-inflammatory macrophages, demonstrating that both hydrogels are favorable materials for bone tissue regeneration. Finally, the EDX analysis showed a stepwise transformation of the vaterite particle into hydroxyapatite. Overall, the results of the present study demonstrate that hydrogels including nano-vaterite particles are biocompatible and suitable for bone tissue regeneration applications.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3