R-Loop-Associated Genomic Instability and Implication of WRN and WRNIP1

Author:

Marabitti VeronicaORCID,Valenzisi Pasquale,Lillo Giorgia,Malacaria Eva,Palermo Valentina,Pichierri PietroORCID,Franchitto Annapaola

Abstract

Maintenance of genome stability is crucial for cell survival and relies on accurate DNA replication. However, replication fork progression is under constant attack from different exogenous and endogenous factors that can give rise to replication stress, a source of genomic instability and a notable hallmark of pre-cancerous and cancerous cells. Notably, one of the major natural threats for DNA replication is transcription. Encounters or conflicts between replication and transcription are unavoidable, as they compete for the same DNA template, so that collisions occur quite frequently. The main harmful transcription-associated structures are R-loops. These are DNA structures consisting of a DNA–RNA hybrid and a displaced single-stranded DNA, which play important physiological roles. However, if their homeostasis is altered, they become a potent source of replication stress and genome instability giving rise to several human diseases, including cancer. To combat the deleterious consequences of pathological R-loop persistence, cells have evolved multiple mechanisms, and an ever growing number of replication fork protection factors have been implicated in preventing/removing these harmful structures; however, many others are perhaps still unknown. In this review, we report the current knowledge on how aberrant R-loops affect genome integrity and how they are handled, and we discuss our recent findings on the role played by two fork protection factors, the Werner syndrome protein (WRN) and the Werner helicase-interacting protein 1 (WRNIP1) in response to R-loop-induced genome instability.

Funder

Italian Association for Cancer Research

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3