Genome-Wide ChIPseq Analysis of AhR, COUP-TF, and HNF4 Enrichment in TCDD-Treated Mouse Liver

Author:

Cholico Giovan N.ORCID,Nault RanceORCID,Zacharewski Tim R.

Abstract

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor known for mediating the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. Although the canonical mechanism of AhR activation involves heterodimerization with the aryl hydrocarbon receptor nuclear translocator, other transcriptional regulators that interact with AhR have been identified. Enrichment analysis of motifs in AhR-bound genomic regions implicated co-operation with COUP transcription factor (COUP-TF) and hepatocyte nuclear factor 4 (HNF4). The present study investigated AhR, HNF4α and COUP-TFII genomic binding and effects on gene expression associated with liver-specific function and cell differentiation in response to TCDD. Hepatic ChIPseq data from male C57BL/6 mice at 2 h after oral gavage with 30 µg/kg TCDD were integrated with bulk RNA-sequencing (RNAseq) time-course (2–72 h) and dose–response (0.01–30 µg/kg) datasets to assess putative AhR, HNF4α and COUP-TFII interactions associated with differential gene expression. Functional enrichment analysis of differentially expressed genes (DEGs) identified differential binding enrichment for AhR, COUP-TFII, and HNF4α to regions within liver-specific genes, suggesting intersections associated with the loss of liver-specific functions and hepatocyte differentiation. Analysis found that the repression of liver-specific, HNF4α target and hepatocyte differentiation genes, involved increased AhR and HNF4α binding with decreased COUP-TFII binding. Collectively, these results suggested TCDD-elicited loss of liver-specific functions and markers of hepatocyte differentiation involved interactions between AhR, COUP-TFII and HNF4α.

Funder

National Institute of Environmental Health Sciences, Superfund Research Program

National Institute of Environmental Health Sciences

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3