FBN2 Silencing Recapitulates Hypoxic Conditions and Induces Elastic Fiber Impairment in Human Dermal Fibroblasts

Author:

Boizot Jérémy,Minville-Walz Mélaine,Reinhardt Dieter Peter,Bouschbacher Marielle,Sommer Pascal,Sigaudo-Roussel Dominique,Debret RomainORCID

Abstract

Most chronic wounds are characterized by varying degrees of hypoxia and low partial pressures of O2 that may favor the development of the wound and/or delay healing. However, most studies regarding extracellular matrix remodeling in wound healing are conducted under normoxic conditions. Here, we investigated the consequences of hypoxia on elastic network formation, both in a mouse model of pressure-induced hypoxic ulcer and in human primary fibroblasts cultured under hypoxic conditions. In vitro, hypoxia inhibited elastic fiber synthesis with a reduction in fibrillin-2 expression at the mRNA and protein levels. Lysyl oxidase maturation was reduced, concomitant with lower enzymatic activity. Fibrillin-2 and lysyl oxidase could interact directly, whereas the downregulation of fibrillin-2 was associated with deficient lysyl oxidase maturation. Elastic fibers were not synthesized in the hypoxic inflammatory tissues resulting from in vivo pressure-induced ulcer. Tropoelastin and fibrillin-2 were expressed sparsely in hypoxic tissues stained with carbonic anhydrase IX. Different hypoxic conditions in culture resulted in the arrest of elastic fiber synthesis. The present study demonstrated the involvement of FBN2 in regulating elastin deposition in adult skin models and described the specific impact of hypoxia on the elastin network without consequences on collagen and fibronectin networks.

Funder

Urgo Laboratories

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Genetic models of fibrillinopathies;GENETICS;2023-11-16

2. Identification of potential immunologic resilience in the healing process of diabetic foot ulcers;International Wound Journal;2023-11-05

3. References;The Elasticity of Life;2023-09-05

4. Penicillamine‐induced degenerative dermopathy in a patient with Wilson's disease;Australasian Journal of Dermatology;2022-12-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3