Abstract
Osteoarthritis (OA) is a severe, common chronic orthopaedic disorder characterised by a degradation of the articular cartilage with an incidence that increases over years. Despite the availability of various clinical options, none can stop the irreversible progression of the disease to definitely cure OA. Various mutations have been evidenced in the mitochondrial DNA (mtDNA) of cartilage cells (chondrocytes) in OA, leading to a dysfunction of the mitochondrial oxidative phosphorylation processes that significantly contributes to OA cartilage degeneration. The mitochondrial genome, therefore, represents a central, attractive target for therapy in OA, especially using genome editing procedures. In this narrative review article, we present and discuss the current advances and breakthroughs in mitochondrial genome editing as a potential, novel treatment to overcome mtDNA-related disorders such as OA. While still in its infancy and despite a number of challenges that need to be addressed (barriers to effective and site-specific mtDNA editing and repair), such a strategy has strong value to treat human OA in the future, especially using the groundbreaking clustered regularly interspaced short palindromic repeats (CRIPSR)/CRISPR-associated 9 (CRISPR/Cas9) technology and mitochondrial transplantation approaches.
Funder
World Arthrosis Foundation
National Natural Science Foundation of China
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献