PD-L1 Expression in Monocytes Correlates with Bacterial Burden and Treatment Outcomes in Active Pulmonary Tuberculosis

Author:

Pan Sheng-WeiORCID,Shu Chin-Chung,Huang Jhong-Ru,Lee Chang-Ching,Tseng Yen-Han,Hung Jung-Jyh,Hsu Po-Kuei,Chen Nien-Jung,Su Wei-JuinORCID,Feng Jia-Yih,Chen Yuh-Min

Abstract

The PD-1/PD-L1 pathway is critical in T cell biology; however, the role of the PD-1/PD-L1 pathway in clinical characteristics and treatment outcomes in pulmonary tuberculosis (PTB) patients is unclear. We prospectively enrolled PTB, latent TB infection (LTBI), and non-TB, non-LTBI subjects. The expression of PD-1/PD-L1 on peripheral blood mononuclear cells (PBMCs) was measured and correlated with clinical characteristics and treatment outcomes in PTB patients. Immunohistochemistry and immunofluorescence were used to visualize PD-1/PD-L1-expressing cells in lung tissues from PTB patients and from murine with heat-killed MTB (HK-MTB) treatment. A total of 76 PTB, 40 LTBI, and 28 non-TB, non-LTBI subjects were enrolled. The expression of PD-1 on CD4+ T cells and PD-L1 on CD14+ monocytes was significantly higher in PTB cases than non-TB subjects. PTB patients with sputum smear/culture unconversion displayed higher PD-L1 expression on monocytes. PD-L1-expressing macrophages were identified in lung tissue from PTB patients, and co-localized with macrophages in murine lung tissues. Mycobacterium tuberculosis (MTB) whole cell lysate/EsxA stimulation of human and mouse macrophages demonstrated increased PD-L1 expression. In conclusion, increased expression of PD-L1 on monocytes in PTB patients correlated with higher bacterial burden and worse treatment outcomes. The findings suggest the involvement of the PD-1/PD-L1 pathway in MTB-related immune responses.

Funder

Ministry of Science and Technology

Taipei Veterans General Hospital

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3