Abstract
DNA damage response (DDR) is critical to ensure genome stability, and defects in this signaling pathway are highly associated with carcinogenesis and tumor progression. Nevertheless, this also provides therapeutic opportunities, as cells with defective DDR signaling are directed to rely on compensatory survival pathways, and these vulnerabilities have been exploited for anticancer treatments. Following the impressive success of PARP inhibitors in the treatment of BRCA-mutated breast and ovarian cancers, extensive research has been conducted toward the development of pharmacologic inhibitors of the key components of the DDR signaling pathway. In this review, we discuss the key elements of the DDR pathway and how these molecular components may serve as anticancer treatment targets. We also summarize the recent promising developments in the field of DDR pathway inhibitors, focusing on novel agents beyond PARP inhibitors. Furthermore, we discuss biomarker studies to identify target patients expected to derive maximal clinical benefits as well as combination strategies with other classes of anticancer agents to synergize and optimize the clinical benefits.
Funder
National Research Foundation of Korea
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献