Abstract
Degradation of water quality in recreational areas can be a substantial public health concern. Models can help beach managers make contemporaneous decisions to protect public health at recreational areas, via the use of microbial fate and transport simulation. Approaches to modeling microbial fate and transport vary widely in response to local hydrometeorological contexts, but many parameterizations include terms for base mortality, solar inactivation, and sedimentation of microbial contaminants. Models using these parameterizations can predict up to 87% of variation in observed microbial concentrations in nearshore water, with root mean squared errors ranging from 0.41 to 5.37 log10 Colony Forming Units (CFU) 100 mL−1. This indicates that some models predict microbial fate and transport more reliably than others and that there remains room for model improvement across the board. Model refinement will be integral to microbial fate and transport simulation in the face of less readily observable processes affecting water quality in nearshore areas. Management of contamination phenomena such as the release of storm-associated river plumes and the exchange of contaminants between water and sand at the beach can benefit greatly from optimized fate and transport modeling in the absence of directly observable data.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献