Is Running Power a Useful Metric? Quantifying Training Intensity and Aerobic Fitness Using Stryd Running Power Near the Maximal Lactate Steady State

Author:

van Rassel Cody R.1ORCID,Ajayi Oluwatimilehin O.1,Sales Kate M.1,Griffiths James K.1,Fletcher Jared R.2ORCID,Edwards W. Brent1,MacInnis Martin J.1

Affiliation:

1. Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada

2. Department of Health and Physical Education, Mount Royal University, Calgary, AB T3E 6K6, Canada

Abstract

We sought to determine the utility of Stryd, a commercially available inertial measurement unit, to quantify running intensity and aerobic fitness. Fifteen (eight male, seven female) runners (age = 30.2 [4.3] years; V·O2max = 54.5 [6.5] ml·kg−1·min−1) performed moderate- and heavy-intensity step transitions, an incremental exercise test, and constant-speed running trials to establish the maximal lactate steady state (MLSS). Stryd running power stability, sensitivity, and reliability were evaluated near the MLSS. Stryd running power was also compared to running speed, V·O2, and metabolic power measures to estimate running mechanical efficiency (EFF) and to determine the efficacy of using Stryd to delineate exercise intensities, quantify aerobic fitness, and estimate running economy (RE). Stryd running power was strongly associated with V·O2 (R2 = 0.84; p < 0.001) and running speed at the MLSS (R2 = 0.91; p < 0.001). Stryd running power measures were strongly correlated with RE at the MLSS when combined with metabolic data (R2 = 0.79; p < 0.001) but not in isolation from the metabolic data (R2 = 0.08; p = 0.313). Measures of running EFF near the MLSS were not different across intensities (~21%; p > 0.05). In conclusion, although Stryd could not quantify RE in isolation, it provided a stable, sensitive, and reliable metric that can estimate aerobic fitness, delineate exercise intensities, and approximate the metabolic requirements of running near the MLSS.

Funder

Natural Sciences and Engineering Research Council

Faculty of Kinesiology

NSERC CREATE We-TRAC

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3