Author:
Wang Fan,Zhao Chunjiang,Yang Guijun
Abstract
Juiciness is a primary index of pear quality and freshness, which is also considered as important as sweetness for the consumers. Development of a non-destructive detection method for pear juiciness is meaningful for producers and sellers. In this study, visible−near-infrared (VIS/NIR) spectroscopy combined with different spectral preprocessing methods, including normalization (NOR), first derivative (FD), detrend (DET), standard normal variate (SNV), multiplicative scatter correction (MSC), probabilistic quotient normalization (PQN), modified optical path length estimation and correction (OPLECm), linear regression correction combined with spectral ratio (LRC-SR) and orthogonal spatial projection combined with spectral ratio (OPS-SR), was used for comparison in detection of pear juiciness. Partial least squares (PLS) regression was used to establish the calibration models between the preprocessing spectra (650–1100 nm) and juiciness measured by the texture analyzer. In addition, competitive adaptive reweighted sampling (CARS) was used to identify the characteristic wavelengths and simplify the PLS models. All obtained models were evaluated via Monte Carlo cross-validation (MCCV) and external validation. The PLS model established by 19 characteristic variables after LRC-SR preprocessing displayed the best prediction performance with external verification determination coefficient (R2v) of 0.93 and root mean square error (RMSEv) of 0.97%. The results demonstrate that VIS/NIR coupled with LRC-SR method can be a suitable strategy for the quick assessment of juiciness for pears.
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献