Abstract
The genome of Lactobacillus acidophilus PNW3 was assessed for probiotic and safety potentials. The genome was completely sequenced, assembled using SPAdes, and thereafter annotated with NCBI prokaryotic genome annotation pipeline (PGAP) and rapid annotation using subsystem technology (RAST). Further downstream assessment was determined using appropriate bioinformatics tools. The production of biogenic amines was confirmed through HPLC analysis and the evolutionary trend of the strain was determined through the Codon Tree pipeline. The strain was predicted as a non-human pathogen. A plethora of encoding genes for lactic acids and bioactive peptides production, adhesion molecules, resistance to the harsh gut environmental conditions, and improvement of the host metabolism, which are putative for important probiotic functionalities, were located at different loci within the genome. A bacteriocin predicted to be helveticin J was identified as one of the secondary metabolites. The maximum zone of inhibition exhibited by the crude bacteriocin against STEC E. coli O177 was 21.7 ± 0.58 mm and 24.3 ± 1.15 mm after partial purification (250 µg/mL). Three coding sequences were identified for insertion sequences and one for the CRISPR-Cas fragment. The protein-encoding sequence for Ornithine decarboxylase was found within the genome. L. acidophilus PNW3 presents important features categorizing it as a viable and safe probiotic candidate, though further safety investigations are necessary. The application of probiotics in livestock-keeping would ensure improved public health and food security.
Subject
Plant Science,Health Professions (miscellaneous),Health(social science),Microbiology,Food Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献