Effect of Low-Temperature-High-Pressure Treatment on the Reduction of Escherichia coli in Milk

Author:

Li YifanORCID,Zheng Zhuoyun,Zhu Songming,Ramaswamy Hosahalli S.,Yu Yong

Abstract

Non-thermal processing of milk can potentially reduce nutrient loss, and a low-temperature-high-pressure (LTHP) treatment is considered as a promising alternative to thermal treatment, attracting considerable attention in recent years. The effect of LTHP treatment (−25 °C, 100–400 MPa) on the phase transition behavior of frozen milk was evaluated. The lethal and injured effects of different pressures and cycle numbers on E. coli in frozen milk were studied by using selective and non-selective enumeration media. Results from the gathered transient time–temperature–pressure data showed that pressures over 300 MPa could induce a phase transition from Ice I to Ice III. The treatment at −25 °C and 300 MPa could achieve a lethal effect similar to the two-cycle treatment of 400 MPa at room temperature. This meant that LTHP conditions can lower the operating pressure by at least 100 MPa or reduce the operation from two cycle to one cycle. Increasing the number of pressure cycles enhanced the lethal effects, which was not additive, but resulted in a transformation of part of the injured cells into dead cells. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) provided direct evidence for the breakdown of cell membrane and cell walls by phase transitions. Combined with a designed internal cooling device, the LTHP process can be expected to be a more attractive alternative to non-thermal processing for the dairy industry.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3