Investigation on the Influence of Fiber Bundle Undulating Architecture on Tensile Behavior of Filament Wound Composite Laminates

Author:

Liu Hao12,Hu Haixiao123,Cao Dongfeng234,Ji Yundong4,Wang Xiangjiang1,Chen Hongda234,Li Shuxin234

Affiliation:

1. Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan 430070, China

2. Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan 528000, China

3. Institute of Advanced Materials and Manufacturing Technology, Wuhan University of Technology, Wuhan 430070, China

4. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China

Abstract

In filament wound composites, fiber bundles cross each other and form an undulating architecture, which may significantly affect the mechanical behavior of composites. In this study, the tensile mechanical behavior of filament wound laminates was studied experimentally and numerically, and the influences of the bundle thickness and winding angle on the mechanical behavior of the filament wound plates were also explored. In the experiments, tensile tests were carried out on filament wound plates and laminated plates. It was found that, compared to laminated plates, filament wound plates had lower stiffness, greater failure displacement, similar failure loads, and more obvious strain concentration areas. In numerical analysis, mesoscale finite element models, which take into account the fiber bundles’ undulating morphology, were created. The numerical predictions correlated well with the experimental ones. Further numerical studies have shown that the stiffness reduction coefficient of filament wound plates with a winding angle of ±55° decreased from 0.78 to 0.74 as the bundle thickness increased from 0.4 mm to 0.8 mm. The stiffness reduction coefficients of filament wound plates with wound angles of ±15°, ±25°, and ±45° were 0.86, 0.83, and 0.8, respectively.

Funder

Fundamental Research Funds for Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3