Affiliation:
1. Joint International Research Laboratory of Biomass Energy and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
2. College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
Abstract
This effort aimed to explore the activation and catalytic graphitization mechanisms of non-toxic salts in converting biomass to biochar from the perspective of pyrolysis kinetics using renewable biomass as feedstock. Consequently, thermogravimetric analysis (TGA) was used to monitor the thermal behaviors of the pine sawdust (PS) and PS/KCl blends. The model-free integration methods and master plots were used to obtain the activation energy (E) values and reaction models, respectively. Further, the pre-exponential factor (A), enthalpy (ΔH), Gibbs free energy (ΔG), entropy (ΔS), and graphitization were evaluated. When the KCl content was above 50%, the presence of KCl decreased the resistance to biochar deposition. In addition, the differences in the dominant reaction mechanisms of the samples were not significant at low (α ≤ 0.5) and high (α ≥ 0.5) conversion rates. Interestingly, the lnA value showed a linearly positive correlation with the E values. The PS and PS/KCl blends possessed positive ΔG and ΔH values, and KCl was able to assist biochar graphitization. Encouragingly, the co-pyrolysis of the PS/KCl blends allows us to target-tune the yield of the three-phase product during biomass pyrolysis.
Funder
National Promotion Project of China
National Key Research and Development Plan of China
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献