Crack Inhibition and Performance Modification of NiCoCr-Based Superalloy with Y2O3 Nanoparticles by Laser Metal Deposition

Author:

Li Xiaodong1,Du Jiaxin1,Xu Jijin12ORCID,Wang Shuai1,Shen Mengling34,Jiang Chuanhai1

Affiliation:

1. School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

2. Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

3. China Nuclear Industry 23 Construction Co., Ltd., Beijing 101300, China

4. Science and Technology on Green Construction Laboratory, Beijing 101300, China

Abstract

A new precipitation strengthening NiCoCr-based superalloy with favorable mechanical performance and corrosion resistance was designed for ultra-supercritical power generation equipment. The degradation of mechanical properties and steam corrosion at high temperatures put forward higher requirements for alternative alloy materials; however, when the superalloy is processed to form complex shaped components through advanced additive manufacturing techniques such as laser metal deposition (LMD), hot cracks are prone to appear. This study proposed that microcracks in LMD alloys could be alleviated with powder decorated by Y2O3 nanoparticles. The results show that adding 0.5 wt.% Y2O3 can refine grains significantly. The increase in grain boundaries makes the residual thermal stress more uniform to reduces the risk of hot cracking. In addition, the addition of Y2O3 nanoparticles enhanced the ultimate tensile strength of the superalloy at room temperature by 18.3% compared to original superalloy. The corrosion resistance was also improved with 0.5 wt.% Y2O3, which was attributed to the reduction of defects and the addition of inert nanoparticles.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3