The Application of Additive Composites Technologies for Clamping and Manipulation Devices in the Production Process

Author:

Joch Richard1ORCID,Šajgalík Michal1ORCID,Drbúl Mário1,Holubják Jozef1,Czán Andrej1ORCID,Bechný Vladimír1ORCID,Matúš Miroslav1ORCID

Affiliation:

1. Department of Machining and Manufacturing Technology, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 1, 010 26 Žilina, Slovakia

Abstract

Additive technologies have been widely adopted in various industries. The choice of additive technology and material directly affects the functionality of the manufactured components. The development of materials with better mechanical properties has led to a growing interest in replacing traditional metal components with those manufactured using additive technologies. The application of Onyx as a material comes into consideration, which contains short carbon fibers to increase the mechanical properties. This study aims to experimentally verify the viability of substituting metal gripping elements with nylon and composite materials. The design of the jaws was customized to meet the requirements of a three-jaw chuck of a CNC machining center. The evaluation process involved monitoring the functionality and deformation effects on the clamped PTFE polymer material. When the metal jaws were applied, significant deformation of the clamped material occurred, which varied with the clamping pressure. This deformation was evidenced by the formation of spreading cracks on the clamped material and permanent shape changes in the tested material. Conversely, nylon and composite jaws manufactured using additive technology demonstrated functionality across all tested clamping pressures, without causing permanent deformation of the clamped material, unlike the traditional metal jaws. The results of this study confirm the applicability of the Onyx material and provide practical evidence of the potential for reducing deformation caused by clamping mechanisms.

Funder

grant scheme

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3