Epitaxial SiC Dosimeters and Flux Monitoring Detectors for Proton Therapy Beams

Author:

Bruzzi Mara123ORCID,Verroi Enrico4

Affiliation:

1. Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino, FI, Italy

2. I.N.F.N. Sezione di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino, FI, Italy

3. Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Firenze, FI, Italy

4. Trento Institute for Fundamental Physics and Applications, National Institute of Nuclear Physics (TIFPA), Via Sommarive, 14, 38123 Povo, TN, Italy

Abstract

The exceptional optoelectronic properties and high radiation resistance of epitaxial silicon carbide make this material attractive for high-energy beam dosimetry and radiation monitoring, especially when strict requirements such as high signal-to-noise ratios, high time and spatial resolutions and low detectivity levels are required. A 4H-SiC Schottky diode has been characterized as a proton-flux-monitoring detector and dosimeter under proton beams for proton therapy. The diode was composed of an epitaxial film grown on 4H-SiC n+-type substrate equipped with a gold Schottky contact. The diode was embedded in a tissue-equivalent epoxy resin and then characterized in terms of capacitance vs. voltage (C-V) and current vs. voltage (I-V) characteristics in the dark in the range of 0–40 V. The dark currents at room temperature are in the order of 1 pA, while the doping and active thicknesses extracted from the C-V are 2.5 × 1015 cm−3 and 2–4 μm, respectively. Proton beam tests have been carried out at the Proton Therapy Center of the Trento Institute for Fundamental Physics and Applications (TIFPA-INFN). They have been carried out with energies and extraction currents of 83–220 MeV and 1–10 nA, respectively, as typical for proton therapy applications, corresponding to dose rates in the range of 5 mGy/s to 2.7 Gy/s. The I-V characteristics measured under proton beam irradiation at the lowest dose rate showed a typical diode photocurrent response and a signal-to-noise ratio well above 10. Investigations with null bias evidenced a very good performance in terms of the diode’s sensitivity, fast rise and decay times and response stability. The diode’s sensitivity was in agreement with the expected theoretical values, and its response was linear throughout the whole investigated dose rate range.

Funder

Istituto Nazionale di Fisica Nucleare

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3